Batched Kronecker product for 2-D matrices and 3-D arrays on NVIDIA GPUs
نویسنده
چکیده
We describe an interface and an implementation for performing Kronecker product actions on NVIDIA GPUs for multiple small 2-D matrices and 3-D arrays processed in parallel as a batch. This method is suited to cases where the Kronecker product component matrices are identical but the operands in a matrix-free application vary in the batch. Any batched GEMM (General Matrix Multiply) implementation, for example ours [1] or the one in cuBLAS [2], can also be used for performing batched Kronecker products on GPUs. However, the specialized implementation presented here is faster and uses less memory. Partly this is because a simple GEMM based approach would require extra copies to and from main memory. We focus on matrix sizes less than or equal to 16, since these are the typical polynomial degrees in Finite Elements, but the implementation can be easily extended for other sizes. We obtain 143 and 285 GFlop/s for single precision real when processing matrices of size 10 and 16, respectively on NVIDIA Tesla K20c using CUDA 5.0. The corresponding speeds for 3-D array Kronecker products are 126 and 268 GFlop/s, respectively. Double precision is easily supported using the C++ template mechanism.
منابع مشابه
A GEMM interface and implementation on NVIDIA GPUs for multiple small matrices
We present an interface and an implementation of the General Matrix Multiply (GEMM) routine for multiple small matrices processed simultaneously on NVIDIA graphics processing units (GPUs). We focus on matrix sizes under 16. The implementation can be easily extended to larger sizes. For single precision matrices, our implementation is 30% to 600% faster than the batched cuBLAS implementation dis...
متن کاملA new approach for sparse matrix vector product on NVIDIA GPUs
The sparse matrix vector product (SpMV) is a key operation in engineering and scientific computing and, hence, it has been subjected to intense research for a long time. The irregular computations involved in SpMV make its optimization challenging. Therefore, enormous effort has been devoted to devise data formats to store the sparse matrix with the ultimate aim of maximizing the performance. G...
متن کاملBatched matrix computations on hardware accelerators based on GPUs
Scientific applications require solvers that work on many small size problems that are independent from each other. At the same time, the high-end hardware evolves rapidly and becomes ever more throughput-oriented and thus there is an increasing need for an effective approach to develop energy-efficient, high-performance codes for these small matrix problems that we call batched factorizations....
متن کاملMAGMA Batched: A Batched BLAS Approach for Small Matrix Factorizations and Applications on GPUs
A particularly challenging class of problems arising in many applications, called batched problems, involves linear algebra operations on many small-sized matrices. We proposed and designed batched BLAS (Basic Linear Algebra Subroutines), Level-2 GEMV and Level-3 GEMM, to solve them. We illustrate how to optimize batched GEMV and GEMM to assist batched advance factorization (e.g. bi-diagonaliza...
متن کاملOrthogonal Arrays Constructed by Generalized Kronecker Product∗
In this paper, we propose a new general approach to construct asymmetrical orthogonal arrays, namely generalized Kronecker product. The operation is not usual Kronecker product in the theory of matrices, but it is interesting since the interaction of two columns of asymmetrical orthogonal arrays can be often written out by the generalized Kronecker product. As an application of the method, some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.7054 شماره
صفحات -
تاریخ انتشار 2013